1 Original Mathematical Program

We seek an optimal solution to the following (non-linear integer) mathematical program:

(Total weighted affinity)	$\max_{x} \sum_{c \in C} \sum_{i \in I} \sum_{j \in I} a_{ij} x_{ic} x_{jc} \omega_i \omega_j$	
(Each guest assigned to exactly one table)	s.t. $\sum_{c \in C} x_{ic} = 1$	$\forall i \in I$
(Table capacity)	$\sum_{i \in I} x_{ic} \le \tau_c$	$\forall c \in C$
(Must-link constraints)	$x_{ic} = x_{i'c}$	$\forall c \in C, (i, i') \in P_O$
(Cannot-link constraints)	$x_{ic} + x_{i'c} \le 1$	$\forall c \in C, (i, i') \in P_N$
(Binary assignment of cluster)	$x_{ic} \in \{0, 1\}$	$\forall i \in I; c \in C$

where:

- $I = \{1, \dots, n\}$: set of n guests
- $C = \{1, \cdots, K\}$: set of K tables
- τ_c : capacity of table c
- a_{ij} : affinity between guest i and j
- $P_O, P_N \subset I \times I$: pairs of guests that must and cannot be together
- ω_i : weight of guest *i*

and:

• x_{ij} : binary variable indicating if guest *i* is assigned to table *j*

2 Linearized Mathematical Program

We use McCormick inequalities to linearize the non-linear bilinear terms $x_{ic}x_{jc}$ in the objective

(Total weighted affinity)	$\max_{x,w} \sum_{c \in C} \sum_{i \in I} \sum_{j \in I} a_{ij} w_{ijc} \omega_i \omega_j$	
(Each guest assigned to exactly one table)	s.t. $\sum_{c \in C} x_{ic} = 1$	$\forall i \in I$
(Table capacity)	$\sum_{i \in I} x_{ic} \le \tau_c$	$\forall c \in C$
(Must-link constraints)	$x_{ic} = x_{jc}$	$\forall c \in C; (i, j) \in P_O$
(Cannot-link constraints)	$x_{ic} + x_{jc} \le 1$	$\forall c \in C; (i,j) \in P_N$
(McCormick 1)	$w_{ijc} \le x_{ic}$	$\forall i,j \in I; c \in C$
(McCormick 2)	$w_{ijc} \le x_{jc}$	$\forall i,j \in I; c \in C$
(McCormick 3)	$w_{ijc} \ge x_{ic} + x_{jc} - 1$	$\forall i,j \in I; c \in C$
(Binary assignment of cluster)	$x_{ic} \in \{0, 1\}$	$\forall i \in I; c \in C$
(Non-negative linearizing variables)	$w_{ijc} \ge 0$	$\forall i,j \in I; c \in C$

3 Linearized Mathematical Program with grouped guests

We can substitute the must-link constraints directly in the objective and replace I by $\mathcal{I} = \mathcal{I}' \cup \mathcal{I}''$ where $\mathcal{I}' = \{\{i\} : i \in I; (i, j) \notin P_0, \forall j \in I\}$ represents the guests that are not part of any must-link constraints and $\mathcal{I}'' = \{\{i_1, \dots, i_{|k|}\} : i_l \in I \cap K, l = 1, \dots, |K|, K \in \mathcal{F}\}$ represents "meta guests" or clusters of guests that must be seated together. \mathcal{F} is the collection of trees in the forest formed by the induced subgraph with edges P_0 and nodes having at least one endpoint in P_0 . Note that \mathcal{I}' and \mathcal{I}' are now treated as collections of sets and $\mathcal{I}', \mathcal{I}'' \subset P(I)$.

If we denote $\bar{n} = |\mathcal{I}|$, then the problem has less decision variables than the previous since $\bar{n} < n$ if $|P_O| > 1$. In other words if we must merge at least 2 guests, then we have at least one less "meta guest" or cluster of guests to assign to tables.

Once we have grouped guests into a new meta-guest we must modulate the affinity between that cluster and the other cluster guests. In our simple case, this is simply the average affinity:

$$\bar{a}_{KL} = \frac{\sum_{i \in K} \sum_{j \in L} a_{ij}}{\bar{\omega}_K \bar{\omega}_L} K \in \mathcal{I}, L \in \mathcal{I}$$
(1)

where for meta guest $K \in \mathcal{I}$, $\bar{\omega}_K = \sum_{i \in K} \omega_i$ represents the total weights of the guests in that group. The table capacities must be modified by considering: $n_K = |K|$, the number of guests in cluster K, where $\sum_{K \in \mathcal{I}} n_K = n$.

The cannot link constraints are replaced by a new set of constraints P'_N where 2 clusters cannot be grouped together as soon as there exists one guest in each that cannot be seated together.

(Total weighted affinity)	$\max_{x,w} \sum_{c \in C} \sum_{I \in \mathcal{I}'} \sum_{J \in \mathcal{I}'} \bar{a}_{IJ} w_{IJc} \bar{\omega}_I \bar{\omega}_J$	
(Each guest assigned to exactly one table)	s.t. $\sum_{c \in C} x_{Ic} = 1$	$\forall I \in \mathcal{I}'$
(Table capacity)	$\sum_{I \in \mathcal{I}'} n_I x_{Ic} \le \tau_c$	$\forall c \in C$
(Cannot-link constraints)	$x_{Ic} + x_{Jc} \le 1$	$\forall c \in C; (I, J) \in P'_N$
(McCormick 1)	$w_{IJc} \le x_{Ic}$	$\forall I, J \in \mathcal{I}; c \in C$
(McCormick 2)	$w_{IJc} \le x_{Jc}$	$\forall I, J \in \mathcal{I}; c \in C$
(McCormick 3)	$w_{IJc} \ge x_{Ic} + x_{Jc} - 1$	$\forall I, J \in \mathcal{I}; c \in C$
(Binary assignment of cluster)	$x_{Ic} \in \{0, 1\}$	$\forall I \in \mathcal{I}; c \in C$
(Non-negative linearizing variables)	$w_{IJc} \ge 0$	$\forall I, J \in \mathcal{I}; c \in C$

if we wish to compute the true optimal value, we may add the constant $\sum_{(i,j)\in P_O^k} a_{ij}\omega_i\omega_j$ (the total affinity of guests that must be placed together), but this is immaterial to finding the optimal solution since this is constant regardless of the assignment.